Hypersonic Inflatable Aerodynamic Decelerators (HIAD) Technology Development Overview

10th International Planetary Probe Workshop

June 17-21, 2013

Stephen J. Hughes, Dr. F. McNeil Cheatwood, Dr. Anthony Calomino, Henry S. Wright, Mary Beth Wusk, Monica Hughes

NASA Langley Research Center

Stephen.J.Hughes@nasa.gov

Outline

- Motivation and Background
- Project Organizational Structure
- Flexible System Development (FSD)
 - -Thermal Protection Systems (TPS)
 - -Inflatable Structures (IS)
- Advanced Entry Concepts (AEC)
- Flight Projects
- Conclusions and Future Work

Motivation for HIAD

- Aeroshell size limited by Launch Vehicle fairing
- Mars thin atmosphere makes it difficult to decelerate large masses and limits accessible surface altitudes. Science payload size and site altitude are limited by Viking EDL architecture.
- Improved payload access
- After inflation, HIAD behave much like a rigid device. Aerodynamics are scalable. HIAD are lighter, increasing delivered payload.
- Lower ballistic coefficient from increased drag area allows higher altitude deceleration (aerocapture or entry) providing access to higher surface elevations, increase in landed mass, and longer EDL timelines.
- Crewed EDL at Mars can benefit from reductions in ballistic coefficient.

MSL in Launch Vehicle Fairing (http://marsprogram.jpl.nasa.gov/msl/multimedia/images/?lmageID=3684)

 MSL
 HEART

 3300 kg
 3500 kg

 4.5 m Dia
 8.5 m Dia

 125 kg/m²
 40 kg/m²

Vision for HIAD Mission Infusion

HIAD Organization Structure

LaRC

HIAD PI **Neil Cheatwood**

Subject Matter Experts LaRC, ARC, GRC, JSC. GSFC

Project Management LaRC

3.0 Advanced Entry Concepts DPI: Henry Wright LaRC

Flexible Systems Development FSD PM: Monica Hughes

DPI: Anthony Calomino LaRC 5.0 Flight Validation LaRC

Mission Applications Lead: Dave Bose LaRC/JSC/MSFC

Lead: Scott Splinter

Lead: Joe Del Corso

Flexible TPS

(2012)

(2013)

CE: Robert Dillman LaRC/GSFC (WFF)

PM: David Gillman

IRVE-3

Next Gen Subsystems Lead: Karl Edquist LaRC/JSC

Lead: Henry Wright

HEART

LaRC/JSC

Inflatable Structures Lead: Keith Johnson LaRC/ARC

LaRC/GRC

IRVE-3 BTP Lead: Lee Noble

John DiNonno

LaRC/GSFC (WFF)

1.0

5

FSD Flexible TPS Development

Mission Simulation Testing

- LaRC 8-Ft High Temperature Tunnel (HTT)
- JSC Test Position 2 (TP2)
- Boeing Large Core Arc Tunnel (LCAT)

Materials Testing and Characterization

- Age Testing
- Thermal Conductivity as a function of temperature and pressure
- Permeability as a function of pressure
- Strength
- Pyrolysis/Decomposition Characterization of the insulating materials
- Emmisivity of outer fabric materials
- Surface Catalycity of outer fabric materials

Physics Based Modeling

- CFD to generate ground test environment to simulate flight environment
- Analytical Thermal Response Model Development

8-Ft High Temperature Tunnel

Toroid Simulator

Loaded Sample

Sample in Run

High Speed Video

Photogrammetry

Sample Deflected Surface

JSC TP2 IRVE-3 Nose Cap

In Flow

Extracted

LCAT Shear Testing Development

V1.0 Pressed in Sample Holder

6x4 in Test Cabin

Sample Wrinkling in Flow

V2.0 Mounting 4x4 Configuration

4x4 in Test Cabin

New Sample In Flow

LCAT Stagnation Testing Development

Stagnation Model Holder on Sting

3.5in Holder

4.5in Holder

MASA - Larc Flex TPS
Beeling - St. Louis
LCAT Fear Facility
Side Very
Am 1 - Specimen 49-1
1/30/2013 12:02:10:23

Note: Exposed sample surface is the same for both holders

Conceptual Mission Profile Testing at LCAT

FTPS Age Testing

FTPS Age Testing at Southern Research Institute

- Develop Packing/Aging Configuration
 - Determine achievable packing density
 - Pack/Deploy
 - Thermal cycle
 - Sample extraction
 - Material Properties samples
 - Aerothermal performance samples
- Material properties determination (Pre-Aged/Post-Aged)
 - Thermal Conductivity as a function of temperature and pressure
 - Permeability as a function of pressure
 - Strength
 - Pyrolysis/Decomposition Characterization of the insulating materials
 - Emissivity of outer fabric materials

FTPS Physics Based Modeling

CFD

- Determine Environment from Key points along a trajectory simulation
 - Design environment/system requirements for Flight Articles
 - Development of test facility conditions that simulate flight environment
- Evaluation of Test sample configuration
- Evaluation of sensitivity of environment to OML distortion
- Prediction of aft body heating
- COMSOL thermal response model
 - Integration of all material properties
 - Coupled with Monte Carlo Analysis including property uncertainties

Flight Environment to Facility Environment

Model Holder Geometry Evaluation

LCAT Layup Thermal Response Analysis

FSD Inflatable Structure

Manufacturing processes

- Elemental Components
- Stacked Torus Assembly
- High Temperature Materials

Material structural response properties

- Load testing at temperature
- Elemental testing
 - · Straight Beam Testing University of Maine
 - Torus Testing Dryden Flight Research Center

Performance testing

- NFAC 6m and 3m
- Modal Testing
- Packing durability testing
- NFAC In-test measurements
- Computational Fluid Dynamics (CFD) simulation
 - NFAC pressure distribution
 - Flight

Finite Element Analysis (FEA)

- Incorporate Material Property Testing Data
- Correlation with test data
 - · Elemental article tests
 - · Static load
 - Aerodynamic Loading
 - NFAC
 - IRVE-3

Manufacturing processes

6m Stacked Torus

Axial Cord Marking

Straight Beams

Zylon Braid

Graphite Braid Torus

Material Structural Response Properties

4-Point Beam Bending

Torus Testing

High Temperature Strap Load Testing

Axial Cord Testing

Performance testing

6m NFAC Test

3m NFAC Test

6m Modal Test

Packing Durability Graphite Torus

NFAC In-Test Measurements

NFAC Strap Load Cell Pins and Buckles

NFAC Aeocover Pressure Taps

NFAC Aramis Photogrammetry

Photogrammetric Solution 3m NFAC 80PSF Aerocover and TPS

IS Computational Fluid Dynamics (CFD) Simulation

NFAC 6m smooth body CFD compared to aerocover pressure taps

6m smooth body CFD in NFAC 40 x 80

Finite Element Analysis (FEA)

6m IS Static Load Test LS Dyna prediction vs. strap load test data

Nastran wedge model

Elemental Test Article Radial Loaded Torus 32 Straps, 15 psi, ≈8320 lbf Radial Load

Mapping CFD pressure distribution to annular surfaces on the structural model to analyze structural response to aero load

Mission Application Trade Studies

- Systems analysis has demonstrated HIADs to be applicable to a wide range of mission classes. Potential benefits include:
 - Launch vehicle asset recovery
 - Expanded landing site access
 - Simplified concept of operations
 - Reduced aerothermal loads
- High energy entries including some human scale scenarios at Earth required very large HIADs to reduce heating to current flexible TPS performance capabilities.
 - An increase in flexible TPS performance will significantly increase the range of HIAD applications
- Future HIAD Mission Applications work shall include:
 - Investigate HIAD applicability to missions exploring alternative destinations including Venus, Titan and Uranus
 - Complete a deep-dive design and analysis cycle into select Mars Southern Highlands design points to provide full systems view of HIAD integration and verify trade space models

AEC – Next Generation Subsystem

Trim Tab Investigation UPWT

Aft Body Heating Investigation 20in Mach 6 Air

Scalloped OML heating investigation 20in Mach 6 Air

IRVE-3 Flight

IRVE-3 Launch WFF July 23, 2012

IRVE-3 Aft Camera Composite

- IRVE-3 had a fully successful flight
- Demonstrated lifting flight with a flexible aeroshell
- Vehicle was stable hypersonic through subsonic flight regime
- All data successfully received beyond nominal end of mission, even included additional maneuvers past end of mission

BTP Hardware

- Flight spare unit of the IRVE-3 centerbody hardware
 - Mitigation in the event of launch vehicle failure
 - With successful flight now available for mission
- Antares secondary payload
 - New launch vehicle option
 - Deliver orbital velocity reentry

STOWED HIAD RV (3 METER SHOWN)	REMOVE BEFORE FLIGHT HARDWARE AND EXTERNAL ACCESS REQUIRED	Peak Dyna Peak Acce Experimen Time Abov Entry Mass
22" OUTER DIAMETER CENTERBODY MULTIPLE AZIMUTH LOCATIONS AVAILABLE ANNULAR VOLUME AVAILABLE TO ACCOMMODATE 4 METER STOWED AEROSHELL	BLUE AREAS AVAILABLE ~24" RADIAL CLEARANCE (TB	BR)
FLIGHT TERMINATION LINES - MAY BE POSSIBLE TO USE WITH APPROVAL CABLE SWING SYSTEM ABSOLUTELY NO VIOLATION!	STATIONARY CABLES MATED DURING STAGE 2 ASSEMBLY. POSSIBLE TO CROSS OVER WITH	
	APPROVAL	Δ •

	Antares 3m HIAD	Antares 4m HIAD
Apogee (km)	163.7	163.7
Entry Velocity (m/s)	7536.9	7534.6
Max Mach Number	26.8	26.7
Entry Flight Path Angle (deg)	-0.39	-0.39
Peak Heat Flux (W/cm^2)	47.8	40.0
Total Heat Load (kJ/cm^2)	11.3	9.3
Peak Dynamic Pressure (kPa)	1.9	1.4
Peak Acceleration (g)	6.4	6.8
Experiment Duration (sec)	817.4	757.5
Time Above 2 W/cm ² (sec)	719.3	659.4
Entry Mace (kg)	20.4	340

Summary/Next Steps

- HIAD has completed the technology maturation of our 1st generation aeroshell system and it is ready for mission infusion
 - System exceeded initial goals for 1st gen
 - >40W/cm² peak heating capability
 - >8kJ/cm² heat load capability
- HIAD has identified 2nd generation aeroshell materials that significantly improve 1st generation capabilities and coupon/element demonstration testing has begun
 - System exceeding initial goals for 2nd gen
 - >60W/cm² peak heating capability
 - >12kJ/cm² heat load capability
- Mission Apps trade studies have identified several mission types where HIAD technology is beneficial to the missions.
 - This FY complete a more detailed
- BTP hardware available for subscale mission in support of 2nd generation aeroshell
- Unfortunately, budget uncertainties endanger all future HIAD technology development.